
NASA-TM-112050

Parallel Processing in a Computationally-Intensive Workload:

Update 05/15/92

Robert J. Bergeron_

Report RND-92-009 December 1992

N/ A
National Aeronautics and
Space Administration

Ames Research Center

Moffett Field, California 94035

ARC 275a (Feb 81)

i_ ¸ _

Parallel Processing in a Computationally-Intensive Workload:

Update 05/15/92

Robert J. Bergeron_

Report RND-92-009 December 1992

NAS Systems Development Branch

NAS Systems Division
NASA Ames Research Center

Mail Stop 258-6

Moffett Field, CA 94035-1000

1 Computer Sciences Corporation, NASA Ames Research Center, Moffett Field, CA 94035-1000

r

Parallel Processing in a Computationally-Intensive Workload:

Update 05/15/92

Abstract

Robert J. Bergeron

Computer Sciences Corporation
NASA Ames Research Center

Moffett Field, CA 94035, USA

This paper updates NAS Cray Y-MP performance results for computa-

tionally intensive workloads employing autotasking. The results indicate

the post memory-upgrade UNICOS operating system continued to effi-

ciently execute workloads containing autotasked programs. For workloads

oversubscribing memory and performing a fixed number of floating point

operations, autotasking a portion of the workload reduced the elapsed

time relative to singletasked execution of the same workload. Factors

influencing the size of the elapsed time reduction include the amount of

workload idle, the number of jobs in the workload and the size of jobs in
the workload.

1.0 Introduction

This paper provides an update of the autotasking performance of

UNICOS 6.0 on heterogeneous workloads characteristic of the Numerical

Aerodynamic Simulation (NAS) Y-MP. For the NAS workload, the Y-MP

memory upgrade from 128 MW to 256 MW allows execution of at least

one large (> 60 MW) user job at all times and has required an increase in

the number of jobs allowed to be memory-resident and executable. The

increased memory motivated this update since it has produced a signifi-

cant impact on the job mix and administration of the NAS workload.

NAS administrators employ a scheduling algorithm to deliver the

Network Queueing System (NQS) batch jobs to the bottom of the UNICOS

run queue. This algorithm ensures sufficient space for each batch job by as-

suming that the job requires the maximum memory available to the

queue. Experience with the algorithm indicated that limiting the maxi-

mum executable jobs to 12 (the limit for the 128 MW Y-MP) frequently

undersubscribed the 256 MW memory. Such undersubscription occurs

when users would submit a 50 MW job to the 64 MW queue because it

does not fit into the 32 MW queue; the scheduling algorithm had to as-

sume that the job required 64 MW since the job was in the 64 MW queue.

The administrative remedy has been to increase the batch job limit to 20;

in practice, about 15 batch jobs are in execution during the off-prime

hours. System joblogs indicate that the generation of significant idle dur-

2

ing off-prime hours is a transient condition, usually brought about by the

execution of several big jobs.

A related effect of the memory upgrade, increased demand for SRFS

space, motivated an additional NAS modification, the reduction of the

swap cache located on SSD from 32 MW to 10 MW. During periods of

swapping, this change could allow more idle CPU time for use by autotask-

ing since transfer of the executable images from swap into memory would

tend to occur at disk speeds.

Autotasking a portion of a supercomputer's workload can be effective in

increasing throughput for workloads displaying a non-negligible fraction

of idle time. For workloads containing a small amount of idle time, the

autotasking overhead and less efficient usage of the CPUs will prevent

throughput increases. Evaluation of autotasking should thus compare the

performance of a singletasked workload (containing idle time) with that of

the same workload with an autotasked component.

The singletasked workload can be arranged to display a fixed number of

floating point operations or to display a fixed idle component. Workloads

with a fixed number of operations can display a varying amount of idle

depending upon the scheduler options. NAS employs a different set of

scheduler options for prime and off-prime service. To claim a

performance advantage, the autotasked version of this type of workload

should complete before its singletasked counterpart. Workloads with a

fixed idle component require careful scheduling to ensure the proper

amount of idle during execution. To claim a performance advantage, the

autotasked version of this type of workload should perform more work

than its singletasked counterpart during the period designated as high idle.

The autotasked workload will perform more work by reducing the high

idle period to a low or zero idle period.

A previous report (Bergeron, 1990) described the performance of a
workload which executed first with all codes singletasked and then with

some of the codes autotasked and the remainder of the codes singletasked.

The distinguishing feature of this workload was that for high-overhead

implementations of autotasking, the autotasked workload always required

more wall clock time than the singletasked workload. For low-overhead

implementations of autotasking, the autotasked workload always required

less wall clock time than the singletasked workload. The "always" in this

context meant under a variety of UNICOS scheduling options. The mix of

autotasked jobs did not reflect an optimal throughput. Rather, the mix

tested the ability of the operating system to maintain the extra CPU and

system time associated with autotasking at a level low enough to allow the

autotasked workload to complete in less wall clock time than the

si :_letasked workload. The value of the workload was that it provided a

"t_ :-nogo" verdict on the current implementation of autotasking.

Since the previous report, additional tests of the 128 MW machine were

executed on 07/30/91 and 11/13/91. These results, along with the last

result from the previous report provide the results shown in the table.

3

Table 1.169 MW Model Workload Pre-Upgrade Results

Date

Workload

Elapsed Time

CPU Time

S_,stem Time
Idle Time

System GFLOPS

03/13/91

Single Auto
1219 1173

7319 7891

96 177

2337 1316

0.903 0.939

07/30/91

Single
1236

7009

48

2830

0.891

Auto

1210

7849

151

1680

0.910

11/13/91

Single
1190

6961

43

2515

0.925

Auto

1086

7643

128

912

1.014

For each experiment, the elapsed time for the autotasked workload was

less than the corresponding elapsed time for the singletasked workload.

System performance, as measured by the wall clock time required to

execute a fixed number of floating point operations, indicates that

UNICOS maintained the autotasking performance improvement

discussed in the previous report. Table 1 also shows increased CPU time

and system time for the autotasked workload relative to the corresponding

singletasked quantities.

Autotasking increases CPU time because the autotasked processors:

• wait on semaphores during synchronization,

• execute extra code associated with ordering the processors,

• process shorter vectors as multiple processors do vector work, and

• suffer memory conflicts as multiple CPUs reference the same

• memory area.

Autotasking increases system time because the autotasked processors will

invoke a system call resch to surrender themselves to the operating

system when the master processor has no work for them.

To test the autotasking performance of the larger memory workload, syn-

thetic workloads consisting of NAS Y-MP production codes have been run

on a dedicated machine. The jobs in this workload were the only jobs in

the system. The experiments employed the same machine configuration

used in NAS Y-MP production periods. Oversubscription of the 256 MW

memory produced time intervals dominated by the execution of several

large-memory jobs. The amount of memory remaining was insufficient to
allow all of the other CPUs to execute and some of the CPUs idled. The au-

totasked programs were able to use these idle CPUs effectively to increase

workload throughput.

The memory upgrade to 256 MW required larger memory programs to

generate the idle for the autotasked programs. The following sections de-
scribe the revisions to the earlier model of the NAS Y-MP workload and

the results of the revised workload executions on the 6.1.5 version of the

UNICOS operating system.

4

2.0 Modelling NAS Y-MP Workload

The workload performance of supercomputers executing a set of mixed

(single CPU and multiple CPU) programs depends upon workload idle

time. NAS administrators try to minimize Y-MP CPU idle time by care-

fully allocating system resources; however, memory oversubscription will

occasionally lead to idle CPUs. This paper reports two cases for the 256

MW Y-MP: a 12-job workload requiring 287 MW and a 15-job workload re-

quiring 303 MW.

Since the first case is an extension of the previous 12-job 169 MW work-

load developed for the 128 MW Y-MP, Table 2 lists the characteristics of
the 169 MW workload for reference.

Table 2. 169 MW Model Workload Parameters

Code

C01

C02

C03

CPU

(Sec)
595

625

602

C04 601

C05 601

Size

(MW)
56

52

9

7

7

C06 601 7

C07 617 5

C08 603 7

C09 143 0.9

C10 122 1.7

Cll

C12

Totals

82 0.8

605 1.6

7179 169

Rate

(MFLOPS)

222

164

FLOPS

%

11.6

9.0

Comments

Autotasked

161 8.5

187 9.9 Autotasked

187 9.9 Autotasked

9.9

9.0

7.1

6.1

6.7

6.6

5.7

100

187

165

133

122

125

131

105

Sin$1etasked

Singletasked

Autotasked

Singletasked

Sin_letasked

Singletasked,

4 copies serially

Singletasked,

5 copies serially
Autotasked,

7 copies serially

Singletasked,

SSD sync I/O

This workload performed 1135 billion floating point operations, and

since the UNICOS kernel requires about 6 MW, this workload

oversubscribed the 128 Y-MP memory by about 47 MW.

Table 3 shows dedicated 8-CPU speedups and efficiencies demonstrated by

the codes designated as autotasked in Table 2.

5

Table 3. Performance of Autotasked Codes in Dedicated Time

UNICOS 6.0

CODE

C01
Speedup

7.67
Efficiency

.959

C04 3.49 .436

C05 3.49 .436

C06 3.49 .436

Cll 3.12 .390

The NAS workload does not normally execute 5 autotasked jobs simul-

taneously; this large number of autotasked jobs provides a severe chal-

lenge to the ability of autotasking to deliver a throughput performance in-

crease, since the autotasked jobs must display limited overhead.
Table 4 shows the workload for the 256 MW Y-MP. This workload was

constructed by doubling the size of several jobs to obtain a memory

oversubscription in rough agreement with that of the 169 MW workload.

Table 4. 287 MW Model Workload Parameters

Code CPU Size Rate FLOPS Comments

(Sec) (MW) (MFLOPS) %

C01 590 84 222 11.6 Autotasked

C02 606 105 164 8.8

C03

C04

596

602

22

15

160

187

8.4

10.0

Sin$1etasked

Singletasked
Autotasked

C05 602 15 187 10.0 Autotasked

C06 602 15 187 10.0 Autotasked

C07 617 5 165 9.0

C08 603 7 133 7.1

C09 143 0.9 122 6.2

C10 122 1.7 125 6.7

Cll 82 0.8 131 6.6

C12 605 1.6 105 5.6

Total 7179 287.3 100

Sinl_letasked

Sinl_letasked

Singletasked,

4 copies serially

Singletasked,

5 copies serially

Autotasked,

7 copies serially

Singletasked,

SSD sync I/O

%•
6

Codes C01-C06 differ as follows from the Table 2 counterparts:

• C01 increased memory requirements from 56 MW to 84 MW;

• C02 increased memory requirements from 52 MW to 105 MW;

• C03 (10MW) replaced by a similar code requiring 22 MW; and

• C04, C05, and C06 increased memory from 8 MW to 15 MW.

The maximum timesteps for new versions of codes C01-C06 were chosen

to require 600 CPU seconds for execution. This workload performed about

1130 billion floating point operations and oversubscribed the 256 MW

memory by about 37 MW, approximately equal to the 47 MW

oversubscribed by the 169 MW workload. Execution of this workload em-

ployed the UNICOS scheduler parameters developed by NAS for the 12-

job 128 MW workloads during the off-prime hours. Off-Prime parameters

disable the UNICOS hog constraints so that once a process has obtained

sufficient memory and a connection to a CPU, only a kernel or I/O inter-

rupt can disconnect the process. These parameters promote the execution

of computationally-intensive jobs.

The 15-job workload arose in response to the the NAS administrative
workload modifications for the 256 MW machine as discussed in Section

1. Examination of the system joblogs indicated that the number of batch

jobs fluctuated around 15 for off-prime operation, and that periods of

swapping-induced idle generally occurred when several large-memory

jobs were executing. The following workload attempts to model this be-

havior by increasing the number of executable jobs and by employing a

memory distribution representative of the job distribution observed for

periods of memory oversubscription and idle. Table 5 shows this work-

load, consisting of 15 jobs and requiring 303 MW of memory.

_ 7

Table 5. 303 MW Model Workload Parameters

Code CPU Size Rate FLOPS Comments

(Sec) (MW) (MFLOPS) %

C01 595 56 222 9.3 Autotasked

C02 625 52 164 7.2

C03

C04

596

601

22

32

160

187

6.7

7.9

Sin_letasked

Singletasked
Autotasked

C05 601 15 187 7.9 Autotasked

C06 601 15 187 7.9 Autotasked

C07 617 5 165 7.0

C08 603 7 133 5.6

C09 143 0.9 122 4.9

1251.7C10 5.3122

Cll 82 5.6 131 5.3

C12 605 1.6 105 4.5

C13 595 56 222 9.3

C14 596 22 160 6.7

C15 605 1.6 105 4.5

Total 8996 302.9 100

Sin_letasked

Sin_letasked

Singletasked,

4 copies serially

Singletasked,

5 copies serially

Autotasked,

7 copies serially

Singletasked,

SSD sync I/O
Autotasked

Sin_letasked

Singletasked,

SSD sync I/O

The 303 MW workload has the following features:

• Duplication of the code C01 from the 169 MW workload;

C13 designates this duplicate;

• Duplication of the code C03; C14 designates this duplicate;

• Duplication of the code C12; C15 designates this duplicate;

• C02 decreased memory requirements from 105 MW to 52 MW; and

• C04 increased memory from 15 MW to 32 MW.

This workload performed 1425 billion floating point operations and

oversubscribed memory by about 53 MW. Execution of this workload

employed the batch scheduler parameters developed by NAS for the 15-job
256 MW workloads.

8

3.0 Results

This section presents a discussion of the performance of the 287 MW and
303 MW workloads. These workloads executed in a dedicated

environment to provide a controlled investigation of autotasking-

generated throughput improvements. Since the workload consisted of a

fixed number of jobs, a throughput improvement would correspond to a

reduction in elapsed time.

Execution began by invoking a UNIX script which recorded the date, ini-

tiated execution of the 12 (or 15) scripts in background, paused until all 12

(or 15) background scripts had completed, and then recorded the comple-

tion date. Each of the 12 (or 15) background scripts initiated execution of a

workload job and requested accounting information for the job. Account-

ing logs provide a wealth of job execution data including elapsed time,

CPU time, system time and idle (semaphore wait) time. Executables in the

singletasked workload corresponded to singletasked versions of the pro-

grams described in Section 2.1. The autotasked workload substituted auto-

tasked executables corresponding to the 5 autotasked programs. Execution

of all autotasked jobs use the 8-CPU default for autotasked jobs.

A monitoring script executed every 30 seconds to record a history of the

CPU time accumulated by the programs in the workload. The script also

provided a snapshot of main memory, swapping information, and system
counters.

3.1 Performance of the 12-job 287 MW Workload

The following figure shows the growth of cumulative idle for the 12-job

287 MW workloads. These workloads used the batch scheduler parameters

developed by NAS for the 12-job 128 MW workloads.

9

12-Job 287MW Workload Idle

w
"0

0
o
o
u)

a-

e

-o

a.
o

e
>

m

(=

E

0

5OOO

4000

3000

2000

1000

I I I

Singletasked

Autotasked

0
0 500 1000 1500 2000

Elapsed Time in Seconds

The singletasked workload idle growth remained at zero until 5 jobs

completed execution at 850 seconds. Eleven jobs completed execution at

878 seconds and subsequent idle growth reflected 7 idle CPUs. Completion

of the 56 MW C01 at 1471 seconds signalled the completion of the single-
tasked workload.

Idle growth for the autotasked workload remained at zero until 571 sec-

onds. By this time, the I MW Cll and 52 MW C01 codes had completed

execution. The remaining three autotasked programs wrote plot and

restart files as they neared completion and the idle grew from about 571

second to 630 seconds as no autotasked program was available to utilize

the free CPUs. Only 7 jobs remained in execution beyond 630 seconds and

subsequent idle growth reflected 5 idle CPUs. Completion of the 2 MW C12

signalled the completion of the autotasked workload.

The autotasked workload elapsed time was 1212 seconds, 18% less than

that of the singletasked workload. Autotasking makes its contribution to

the performance improvement of the workload by using the idle time to

generate useful FLOPs. At 878 seconds, shown in the figure as the time

when the singletasked workload begins its monotonic increase in idle, the

singletasked workload has completed about 91% of workload FLOPS,

whereas the autotasked workload has completed about 78% of workload

10

FLOPS. The relative amounts of work completed at this time show that

the autotasked workload pays a price for executing the parallel jobs. The

figure indicates that the Off-Prime scheduler parameters generated work-

load idle towards the end of the workload completion and it is in this pe-

riod that the performance of the autotasked workload overtakes that of the

singletasked workload.

A simple estimate of maximum throughput involving the replacement

of the 0 MFLOP idle time in both workloads by a CPU performing at the

average workload rate results in the following calculation:

Singletasked Workload:

Maximum Throughput (Billions of floating point operations)

=1101 +(.909/8)'4639=1101 +527=1628

Autotasked Workload:

Maximum Throughput (Billion of floating point operations)

-1101 +(.939/8) "3429=1101 +402 = 1503

Idle time for the autotasked workload has two components: the idle time

accumulated to completion at 1212 seconds and the additional time from
1212 seconds to 1471 seconds. The calculation shows that the autotasked

workload can achieve about 92% of the maximum singletasked

throughput.

The above calculation assigns the full singletasked performance rate to

the entire singletasked idle time. However, during the idle period for the

singletasked workload, at least 52 MW of main memory are occupied.

Such memory usage would prevent full utilization of all the singletasked

idle time since some of the codes would not fit in memory. For the

autotasked workload, 60% of the idle component (from 1212 seconds to

1471 seconds) would involve 100% of the memory available; moreover,

autotasked jobs could reduce any idle time due to memory

oversubscription during the first 40%.

The autotasked job mix was intended to test the autotasking

implementation by providing a highly parallel component: this mix

devoted about 41% of the user CPU time (corresponding to 48% of the user

FLOPS) to parallel processing. The previous paper (Bergeron, 1990)

displayed a workload in which one autotasked job executed continuously

until all singletasked jobs completed; the autotasked workload reduced

idle growth by a factor of 2 and improved throughput by about 4%.

The following figure displays elapsed times for the 287 MW workload.

The figure indicates the elapsed time for each code for execution in the

11

singletasked and autotasked workloads. Asterisks label the autotasked
codes.

12-Job 287 MW Workload Elapsed Times

0
"0
O
o

* 1

2

3

* 4

* 5

*6

7

8

9

10

* 11

12

2000

[] Autotasked

Singletasked

The figure shows that autotasking reduced elapsed time for all autotasked

codes. The high efficiency displayed by the autotasked jobs, as shown in

Table 2, implied a small number of self-driven I/O interrupts. These jobs

tend to finish first in a workload of equal priority jobs because they can ob-

tain additional CPUs for parallel work whenever the singletasked jobs

give up the their CPUs. If the autotasked jobs were to monopolize the

CPU, their elapsed times would be much less. The figure shows that the

autotasked jobs share the CPUs with the singletasked jobs. However, their

"finish first" tendency leads to an alteration in the order of job completion

relative to the singletasked workload.

The figure shows that autotasking reduced elapsed time for all autotasked

codes and increased the elapsed time for all singletasked jobs, except the 52

MW C02. In the singletasked workload, the UNICOS scheduler elected to

place C02 on the swap disk until completion of other jobs freed sufficient

memory. In the autotasked workload, the UNICOS scheduler also elected

to place C02 on the swap disk; however, the smaller amount of wall clock

time required by the autotasked jobs freed 52 MW of memory sooner in

the autotasked workload and permitted earlier completion of C02.

12

3.2 Performance of the 15-job 303 MW Workload

The following figure shows the growth of cumulative idle for the 15-job

303 MW workloads. These workloads used the batch scheduler parameters

developed by NAS for the 15-job 256 MW workloads.

15-Job 303 MW Workload Idle

m
"o
c
0
o
o

¢-

"ID

L
O

e

E

0

3000

2000

1000

0 2000

|

/,

m°m-w-mow°w-w-w.=-w-=-w-w°l-wI°|,1,=,=,=-I°=-

1000

Elapsed Time in Seconds

The figure displays the idle growth characteristic of workload execution

in dedicated time with the Off-Prime parameters: a period of near-zero idle

followed by a rapid increase in the CPU idle as the completion of jobs re-

duces the number of executing jobs below the number of available CPUs.

For the singletasked workload, this reduction occurs at 1087 seconds and

CPU idle rises until the workload completes at 1481 seconds. The system

logs indicated that UNICOS tends to fill available memory with a few big

jobs and to pack the smaller jobs around them. For 303 MW workload, the

big codes C01, C03, C13, and C14 occupy dominant memory locations and

the big C02 must wait until several of these have completed to obtain suf-

ficient memory.

For the autotasked workload, the reduction of executing jobs below the

number of available CPUs occurs at 1172 seconds initiates a sharp increase

in the cumulative idle. This workload completes at 1326 seconds.

An estimate for maximum throughput similar to that performed for the

287 MW workload yields the following:

Singletasked Workload:

Maximum Throughput (Billions of floating point operations)

=1425+(0.962/8)'2650=1425+319=1744

Autotasked Workload:

Maximum Throughput (Billions of floating point operations)

=1425+(1.075/8)'1812=1425+243=1688

The calculation shows that the autotasked workload can achieve about

96% of the maximum singletasked throughput.

The following figure displays elapsed times for the 303 MW workload.

The figure indicates the elapsed time for each code for execution in the

singletasked and autotasked workloads. Asterisks label the autotasked
codes.

13

15-Job 303 MW Workload Elapsed Times

0
"0
0
o

* 1

2

3

* 4

* 5

* 6

7

8

9

10

"11

12

* 13

14

15

I !

ffff

ffffffff

ffffff
1/1111JA

FlFIlllWllllWll/lflll/fJ

11111111111111

f1111111fl_lrrrrl_ll.

"rrr
I

0 1000 2000

[] Autotasked

• Singletasked

Elapsed Time In Seconds

14

The figure shows that autotasking reduced elapsed time for all autotasked

codes. The high efficiency displayed by the autotasked jobs, as shown in

Table 3, implied a small number of self-driven I/O interrupts. These jobs

displayed elapsed time reductions in the range of 50 to 70% and also
tended to finish first as described in the discussion of the 287 MW work-

load.

4.0 Discussion

These experiments indicate that autotasking a portion of a heterogeneous

workload continues to improve workload performance.

The workload represented the NAS Y-MP Off-Prime batch workload with
a small interactive content, a small oversubscription of memory, perfor-

mance exceeding 100 MFLOPS per CPU, and scheduler parameters de-

signed to promote throughput of computationally intense jobs. The codes

comprising the autotasking portion displayed single CPU performances

exceeding 130 MFLOPS and dedicated speedups exceeding 3.

Table 6 shows workload elapsed time and its components: CPU, system
and idle for the workloads described in Tables 2, 4, and 5. The CPU times

quoted in the table include semaphore wait time. The data show that auto-

tasking portions of the larger memory workloads provide increases in

workload throughput relative to their singletasked counterparts.

Table 6. UNICOS Off-Prime Autotasking Summaries

Workload

Scheduler

Workload

Elapsed Time
CPU Time

System Time
Idle Time

System GFLOPS

12-job 169 MW

12-job Off-Prime

Single
1219

7319

96

2337

0.903

Auto

1173

7891

177

1316

0.939

12-job 287 MW

[2-job Off-Prime

Single

1471

6988

88

4639

0.749

Auto

1212

8157

163

1376

0.903

15-job 303 MW

15-job Off-Prime

Single
1481

8794

404

2650

0.962

Auto

1326

9598

437

572

1.075

The throughput of the 287 MW singletasked workload is about 20% less

than that of the 169 MW workload, due primarily to its increased idle

time. The different order of job completion for these two singletasked

workloads determines the length of time CPUs idle for lack of memory

and lack of work. While the UNIX scripts preserve the initial execution

order of the programs, a request to UNICOS by a program for more mem-

ory will cause the program to be swapped out of memory when insuffi-

cient memory is available. The program may not be able to return to

memory until a later time and such a delayed return will change the order

of execution and alter the workload performance. While the execution or-

15

der for two workloads with the same memory oversubscription and the

same scheduler parameters will be the same, increasing the oversubscrip-

tion of a workload (e.g., 287 MW versus 169 MW) will alter the execution

order because a program in the 169 MW workload which could obtain suf-

ficient memory from UNICOS without a swap may be placed on swap

when requesting more memory in the 287 MW workload. Such a request

by the 105 MW C02 in the 287 MW workload forced UNICOS to place C02

on swap until sufficient memory was available and such availability oc-

curred late in workload execution; consequently, most of the C02 execu-

tion occurred when all of the other jobs had completed.

Autotasking the 287 MW workload produced a 20% throughput increase

in because the large 105 MW job was able to fit into memory much earlier
in the execution of the workload.

The 303 MW singletasked workload displayed increased performance for

the singletasked workload since its larger number of jobs were better able

to utilize the idle time. Autotasking this workload produced a 12%

throughput increase.

5.0 Conclusions

A series of model workload executions has indicated that UNICOS con-

tinues to allow autotasking codes to improve workload performance.

Since these workloads performed at 100 MFLOPS/CPU prior to autotask-

ing, this increase in performance is significant. Workload performance

improved because autotasked jobs were able to transform idle cycles into

cycles performing useful work. Since the workloads performed a fixed

number of floating point operations, CPUs idled after the available work

was exhausted and such idling would not occur in a real workload.

Autotasking-generated throughput increases in a real workload should be

smaller than those measured in this report. These results do show that,

under the current Cray implementation, autotasking continues to be an

efficient method for utilizing idle workload cycles.

NAS is currently encouraging the autotasking of large memory jobs in its

workload and an important factor in user participation is the distribution

of the system resources in an equitable fashion. Use of charging algorithm

based on a minimum number of CPUs discourages the submittal of single-

tasked large memory jobs to the batch queue intended for parallel jobs.

However, the system load may prevent even an efficient user application

from obtaining the minimum number of CPUs, and in this case, the algo-

rithm will penalize the user employing autotasking. Administrators

should establish conditions which will ensure that the large memory mul-

titasked jobs will obtain the minimum number of CPUS and benefit from

executing their codes on multiple CPUs.

6.0 References

16

R. Bergeron (1990) "Performance Analysis of the NAS Y-MP Workload,"

_AS RND Technical Report RND 90-009.

